Heme is a carbon monoxide receptor for large-conductance Ca2+-activated K+ channels.
نویسندگان
چکیده
Carbon monoxide (CO) is an endogenous paracrine and autocrine gaseous messenger that regulates physiological functions in a wide variety of tissues. CO induces vasodilation by activating arterial smooth muscle large-conductance Ca2+-activated potassium (BK(Ca)) channels. However, the mechanism by which CO activates BK(Ca) channels remains unclear. Here, we tested the hypothesis that CO activates BK(Ca) channels by binding to channel-bound heme, a BK(Ca) channel inhibitor, and altering the interaction between heme and the conserved heme-binding domain (HBD) of the channel alpha subunit C terminus. Data obtained using thin-layer chromatography, spectrophotometry, mass spectrometry (MS), and MS-MS indicate that CO modifies the binding of reduced heme to the alpha subunit HBD. In contrast, CO does not alter the interaction between the HBD and oxidized heme (hemin), to which CO cannot bind. Consistent with these findings, electrophysiological measurements of native and cloned (cbv) cerebral artery smooth muscle BK(Ca) channels show that CO reverses BK(Ca) channel inhibition by heme but not by hemin. Site-directed mutagenesis of the cbv HBD from CKACH to CKASR abolished both heme-induced channel inhibition and CO-induced activation. Furthermore, on binding CO, heme switches from being a channel inhibitor to an activator. These findings indicate that reduced heme is a functional CO receptor for BK(Ca) channels, introduce a unique mechanism by which CO regulates the activity of a target protein, and reveal a novel process by which a gaseous messenger regulates ion channel activity.
منابع مشابه
Heme Is a Carbon Monoxide Receptor for Large-Conductance Ca -Activated K Channels
Carbon monoxide (CO) is an endogenous paracrine and autocrine gaseous messenger that regulates physiological functions in a wide variety of tissues. CO induces vasodilation by activating arterial smooth muscle large– conductance Ca -activated potassium (BKCa) channels. However, the mechanism by which CO activates BKCa channels remains unclear. Here, we tested the hypothesis that CO activates BK...
متن کاملCarbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation.
This review focuses on two gaseous cellular messenger molecules, CO and H2S, that are involved in cerebrovascular flow regulation. CO is a dilatory mediator in active hyperemia, autoregulation, hypoxic dilation, and counteracting vasoconstriction. It is produced from heme by a constitutively expressed enzyme [heme oxygenase (HO)-2] expressed highly in the brain and by an inducible enzyme (HO-1)...
متن کاملCarbon monoxide stimulates Ca2+ -dependent big-conductance K channels in the cortical collecting duct.
We used the patch-clamp technique to examine the role of carbon monoxide (CO) in regulating Ca(2+)-activated big-conductance K (BK) channels in the principal cell of the cortical collecting duct (CCD). Application of CORM3 or CORM2, a CO donor, activated BK channels in the CCD, whereas adding inactivated CORM2/3 had no effect. Superfusion of the CCD with CO-bubbled bath solution also activated ...
متن کاملRegulation of endothelial BK channels by heme oxygenase-derived carbon monoxide and caveolin-1.
A novel vasodilatory influence of endothelial cell (EC) large-conductance Ca(2+)-activated K(+) (BK) channels is present after in vivo exposure to chronic hypoxia (CH) and may exist in other pathological states. However, the mechanism of channel activation that results in altered vasoreactivity is unknown. Previously, we demonstrated that inhibition of either BK channels or heme oxygenase (HO) ...
متن کاملCarbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats.
Large-conductance calcium-activated potassium channels (BK(Ca)s) are important regulators of arterial tone and represent a mediator of the endogenous vasodilator carbon monoxide (CO). Because an up-regulation of the heme oxygenase (HO)/CO system has been associated with mesenteric vasodilatation of cirrhosis, we analyzed the interactions of BK(Ca) and of HO/CO in the endothelium-dependent dilat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 97 8 شماره
صفحات -
تاریخ انتشار 2005